之间的干扰和混乱已成为当今的时代的首要挑战,研发有效屏蔽高低频电磁干扰的高性能电磁屏蔽材料已成为当前的研究热点。未来电磁屏蔽材料将朝着超薄、柔性化、轻质化、宽频高效吸收、耐高温、力学性能好等方向发展。聚酰亚胺(性能好、热学稳定性好等特点,常被用作高性能电磁屏蔽复合材料的基体材料。该文介绍了 PI 电磁屏蔽材料的屏蔽机理,重点总结了其屏蔽性能的影响因素及研究进展,并阐述了高性能 PI 电磁屏蔽材料未来的发展趋势,为后续 PI 类电磁屏蔽材料的研究提供参考。
5G通信技术的快速发展和Wi-Fi便携设备市场的快速增长使空间中的电磁波过度拥挤,这些电磁波会对不同的通信渠道造成干扰(图 1)。此外,电子设备的高度集成电路所产生的电磁辐射不仅有可能导致附近设备的功能故障,还有可能干扰自身设备的正常运转。因此,电磁辐射成为许多领域的重要挑战,如电子、通信、军事以及医疗设备等领域。此外,世界卫生组织(WHO)最近的报告指出,电磁辐射还有可能对的健康具有潜在的危害,可能导致癌症、头痛、抑郁、疲劳等,至今电磁辐射是否对人类健康产生影响仍然有很大的争议。为了减小这种不必要的电磁辐射的影响,使用有效的屏蔽材料是不可避免的。特别是,目前现代化电子设备需要轻质化、柔性化、高效化、耐高温和机械性能好的高性能电磁干扰(EMI)屏蔽材料,期望屏蔽材料尽可能减少占据电子设备有限的空间,且不限制其常规的灵活功能。
金属材料多具有较高导电性和良好的磁导率,无论在电磁场还是在静电场中都具有良好的 EMI屏蔽效能。传统的 EMI 屏蔽材料主要采用金属和磁性材料,如铜、铝、镍、钢、铁、铁镍合金等。尽管金属具有良好的 EMI 屏蔽效能,但其由于密度大、易腐蚀、低灵活性等缺点并不适合应用于现代化设备。为了摆脱金属 EMI 屏蔽材料的局限性,大量的研究工作已经开始研发具有灵活性、易加工性、可扩展性、耐化学性和轻质等特性的高性能 EMI 屏蔽材料。相较于传统的金属类 EMI 屏蔽材料,以聚酰亚胺(PI)为代表的高性能 PI EMI 屏蔽复合材料不仅具有优异的 EMI 屏蔽性能,还具有柔性、轻质、耐腐蚀、易加工、低成本、力学性能优异等特点,具有广阔的应用前景。
为了确保设备的顺利运行,避免不必要的信号干扰,轻质和高效的 EMI 屏蔽将是下一代电子和通信设备的关键要求。鉴于 EMI 屏蔽在现代电子时代的核心重要性,本文对 PI 材料在 EMI 屏蔽领域的研究进行了全面的回顾,以反映这一领域的现状。首先讨论了电磁屏蔽的关键概念及其屏蔽机理。随后总结了 PI EMI 屏蔽材料的制备方法、分类及其研究进展。最后提出了 PI EMI 屏蔽材料未来的研究方向,以克服现有的技术瓶颈,研发先进的高性能 PI EMI 屏蔽材料。
EMI 是指由于电磁波的传输而导致的对电子设备性能造成的干扰或中断。EMI 有两种主要的干扰类型:辐射干扰和传导干扰。在辐射干扰中,辐射源是由设备产生,并通过空气传播远离设备传到另一个导电网络。而传导性干扰的辐射源是来自内部设备,通过电源或信号导体传播。由于整个配电网络是通过电源线连接,所以传导干扰会严重影响设备的运转。此外,EMI 也可以来自自然界,如电子风暴、太阳和星际辐射,也可能来自人造源,如商业无线电、雷达和电话。一般来说,EMI 发生在 1×104~1×1012Hz 的电磁频率范围内,通常可以通过在辐射源和设备之间放置屏蔽材料来防止EMI。EMI 屏蔽材料的屏蔽效能(SE)为入射功率与传输功率的比率。如表 1 所示,根据 SE 大小可以对 EMI 屏蔽材料进行以下分类,EMI 屏蔽材料的 SE 计算如式(1)所示:
式中:SE 为 EMI 屏蔽材料的屏蔽效能,dB;P0为入射到屏蔽层上的功率,W;E0为电场强度,V/m;H0为磁场强度 A/m;Pt、Et和 Ht为通过屏蔽层材料传输的对应量。
如图 2 所示,电磁波的衰减通过 3 种机制发生:反射、吸收和多重反射。第一种屏蔽机制是指对于像铜这样的高导电材料主要通过反射电磁波以达到电磁波的衰减。对于反射屏蔽,材料必须有自由电荷载体(电子或空穴),可以与进入的电磁波相互作用。第二种屏蔽机制主要是指通过电磁波与固体中的电/磁偶极、电子和声子的相互作用吸收电磁波达到电磁波的衰减。因此,吸收屏蔽可以通过增强屏蔽材料的电偶极子或磁偶极子的相互作用。然而在传导屏蔽中,吸收也可能发生于电阻损失,包括通过焦耳效应将电磁能量转化为热量。第三种屏蔽机制是指屏蔽材料对传入电磁波进行的多重反射。
基于不同的屏蔽要求,可以采用不同的方法测量屏蔽材料的 SE,如开放场地/自由空间法、屏蔽箱法、屏蔽室法和波导法。然而在实验中,大多采用矢量网络分析仪(VNA)来测量屏蔽材料的SE(图 3)。这是由于标量网络分析仪(SNA)只能测量信号的振幅,而 VNA 除了可以测量屏蔽材料的散射(S)参数外,还可以提供屏蔽材料的介电常数、磁导率和 SE。在 EMI 屏蔽理论中,当电磁波入射到屏蔽材料上时,入射功率被分配转化为反射、吸收和透射功率,相应的吸收率(A)、反射率(R)和透射率(T)的功率系数满足 A+R+T=1。EMI SE(SET,dB)、反射效能(SER,dB)和吸收效能(SEA,dB)可按照式(2)~(4)进行计算。
式中:S11为电磁波的输入反射系数;S12为电磁波的反向传输系数;SEM为电磁波在 EMI 屏蔽材料内部的多重反射效能,dB;当SET>
10 dB 时,可以忽略。图 3 矢量网络分析仪
通常,PI EMI 屏蔽材料的屏蔽效能受到多个因素共同作用。一是 PI EMI 屏蔽材料的结构类型:基于不同的应用需求,不同结构类型屏蔽材料的设计可实现高低频电磁波的高效吸收;二是电磁损耗功能材料的种类及负载量:基于不同的电磁损耗功能材料会使最终的 PI EMI 屏蔽材料展现出不同的优势,此外电磁损耗功能材料的负载量会直接影响 PI EMI 屏蔽材料的导电性能,从而影响 PI EMI 屏蔽材料的 SE;三是电磁功能损耗材料涂层厚度:基于电磁屏蔽理论,电磁损耗功能材料涂层厚度直接影响电磁波的吸收损耗和透射损耗,进而影响 PI EMI 屏蔽材料的整体屏蔽性能;四是 PI EMI 屏蔽材料的制备方法:不同的制备工艺则会影响电磁损耗功能材料在屏蔽体内的分布形态,从而影响电磁损耗功能材料的屏蔽性能。
PI EMI 屏蔽材料主要有填充型和复合型两种,如图 4 所示。复合型是以起承载作用的 PI 基体层和电磁损耗功能层复合得到,可根据实际需求在 PI 基体层的基础上对电磁吸波层和反射层进行多层组合,以实现导电网络的构建以及对电磁波的梯度反射和吸收,达到优异的 EMI 屏蔽性能。如 KIM等首先利用倒装工艺在 PI 膜表面嵌入银纳米线(AgNWs)涂层,随后采用化学镀法将铜(Cu)镀覆在 AgNWs/PI 膜表面,制得了一种三层结构的 Cu/AgNWs/PI 膜,该复合膜在两层电磁损耗功能材料的协同作用下实现了对电磁波的梯度反射和吸收,进而赋予了该复合膜优异的 EMI 屏蔽性能。而填充型的 PI EMI 屏蔽材料则是以 PI 树脂与电磁损耗功能材料混合一次成形得到,填充型的 PI EMI屏蔽材料兼具承载和屏蔽电磁波的双重功能。其中,填充型 PI EMI 屏蔽材料主要通过不同种类电磁损耗功能材料的混合添加实现导电网络的构建以及对电磁波的梯度吸收。例如:刘沛江将具有介电损耗能力的石墨烯和磁损耗能力的铁氧体加入到 PI 树脂中通过热压成型法制备了一种三元复合材料。借助于石墨烯/铁氧体的高效吸波能力与 PI 树脂的高透波性、高强度,使得该复合材料表现出优异的吸波性能、力学性能和热学性能。此外,填充型的 PI 基 EMI 屏蔽材料多以电磁屏蔽用 PI 复合泡沫和 PI 复合气凝胶的形态呈现,这是因为,泡孔的引入即可降低 PI 基 EMI 屏蔽材料的密度,满足当下电磁屏蔽材料轻量化的发展趋势,同时也可实现电磁波在 PI 基 EMI 屏蔽材料内部的多次反射与吸收。
相交于复合型 PI EMI 屏蔽材料,填充型 PI EMI 屏蔽材料的制备较为简单,适合工业化生产,然而电磁损耗功能材料在高黏度的 PI 基体中不易分散均匀,且在基体中不易形成贯通的导电网络,进而会直接影响屏蔽材料的 SE。
目前,电磁损耗功能材料主要有金属系材料、碳系材料、导电高分子系材料和复合系材料,如表2 所示。其中铜、铝等大多数的良导体金属材料,主要以反射电磁波为主,而高导磁率的合金和铁氧体主要是对电磁波的吸收而不是反射。此外,屏蔽材料的导电性是 EMI SE 的关键参数之一,然而导电性能的好坏取决于电磁损耗功能材料的选择及其负载量。因此电磁损耗功能材料以及负载量的不同,屏蔽材料的 SE 也会不同。当电磁损耗功能材料含量较低时,无法在 PI 电磁屏蔽材料中形成良好导电通路,进而影响其 SE。
一般来将,在一定的范围内随着电磁损耗功能材料含量的增加,PI 电磁屏蔽材料的 SE 有所增加,如吴同华等探讨了碳纳米管(CNTs)含量对 PI 复合膜屏蔽性能的影响,结果发现,通过调节CNTs 的含量与分布,可以明显改善 PI 复合膜的 SE。当 CNTs 的含量在一定范围时,随着 CNTs 含量的增加,CNTs 在 PI 基体中的导电网络逐渐相互贯通,使 PI 复合膜表现出不同的 SE。但当 CNTs 含量(以 PI 基体的质量为基准,下同)增加到 5%时,其 SE 不再增加。这可能是因为 CNTs 的含量在5%时,CNTs 在基体中形成的导电结点已经饱和,过多的 CNTs 的反而影响 PI 复合膜微孔的形成,进而影响到屏蔽材料的 SE。因此,只有电磁损耗功能材料含量达到一定的程度时,才能在屏蔽材料中形成相互贯通的导电网络,屏蔽材料才会显示出优秀的导电性能,进而实现屏蔽材料对电磁波的高效吸收。
由电磁屏蔽机理可知,穿透到屏蔽材料中的电磁波的强度会随着导体的深度而减小。目前,诸多研究显示,不同的电磁损耗功能涂层厚度使屏蔽材料体现出不同的 SE,如 DING 等以通过控制化学沉积时间,制备了不同厚度的 PI 功能织。